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Notations
Let © be a bounded Lipshitz domain in R3.

We denote independent variables by x = (x1, x5, x3) or z,y, z if it does
not lead to misunderstandings. In the space of vector functions, introduce
the norms and operators:
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In what follows, we assume summation over repeating indices in products.
By ¢ with and without indices we denote constants in inequalities not depending
on the functions entering these inequalities but depending in general on
initial data of the problem (a form of domain, constants from the embedding
theorems, norms of the right-hand sides of equations, time interval, etc.).



Formulation of the problem
The system of Navier—Stokes equations describing dynamics of incompressible
viscous flow is of the form

u; — vAu—vd*u+ Vp+ (u- V)u+wu, =f,
wy — vAw — vd*w + p, + (u- V)w + ww, = g,

divu+w, =0,

(u, w)(z,0) = (ug, wp)(z), divug + d,wo =0, (u,w) oo 0.

In practice, there are problems when a viscosity coefficient is different in
various directions. For instance, in simulation of ocean dynamics the viscosity
coefficients in vertical and horizontal directions are different. So, it is natural
to consider the case when the viscosity coefficient in horizontal direction
equals v, while in the vertical direction z it equals p. In this case equations
(1) take the form

u; — vAu — pd*u+ Vp+ (u- V)u + wu, = f,
wy — vAwW — pd?w + p, + (u- Viw + ww, = g,

diva+w, =0,

0) = (u’ w° divu® + 9w’ =0, , =0.
(0, w)(x,0) = (u’,w’)(z), divu’® + d.w (00 o
For simplicity of consideration, put f =0, g = 0.
Let us study the solvability “in the large” of (2). The following theorem
holds:

Theorem 1. For any sufficiently smooth initial condition ug, any v > 0 and
arbitrary time interval [0,T] there is > 0 such that there exists a solution
to (2) “in the large”, i.e. there exists u € H'(Qr) satisfying (2) in a week
sense and the norm ||u.|| is continuous in time on [0,T]. Moreover, in this
case the following inequality holds

la, ()] < ||u,(0)] Wt > 0.



Proof. To prove the theorem we use the Ladyzhenskaya inequality

1£113 < exll farll 1 foo Il ML foa 1 £ (3)

being valid for any f € H}(Q).
Take scalar product in Ly of the first equation of (2) and u and the second
equation of (2) and w in Ly. Adding results, we have

S (Il ) + U+ [ F0]?) s+ ) = 0 (4)
integration of (4) in time gives
()] + w@®* < [[u®l* + [[°)* = M2 (5)
From (4) and (5) one gets
v(IVal® + [[Vwl®) + allfwl® + [[w.]*) < M(|[wll + [[wl). — (6)
Differentiate (2) in ¢:
uy — vAw — pd*uy + Vpr + (wy - V)u + weu, + (u - V)u, + weuy, =
wy — VAW — pd*wi + pr. + (ug - V)w + wpw, + (u- V)wy + wwe, = gy,
divu, +we, = 0.

(7)

Take now a scalar product of the first two equations of (7) and (u, wy):
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5 77 (el =+ llwell®) + v (IV el + [1Vewe]*) + el [ + ) @)

+((ut . V)u + w,, ut) + ((ut . V)w + wth,wt) = 0
Estimate the scalar products of (8). Integration by parts gives

|((ut . V)u + w,, ut> + ((ut . V)w + wth,wt)‘

= [(ujpa, 0z, uy) + (weu, ug,) + (ujow, Oy, wy) + (Wew, wy)|.



Estimate now each of these scalar products separately using the Holder
inequality and estimates (5) and (6):
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All other scalar products are estimated in the same way. Choosing proper &,
we finally obtain

(g - V)u 4wy, wy) + ((ug - V)w + wpw,, wy)|

9)
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Substituting (9) into (8), one gets
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a1+ lwes[2) = =5 (luel|* + [[wel|*)** < 0,

from what follows

d
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(10)

cM?
+ (u = gy el =+ ||wt\|)> (g | + [Jwe:[1*) < 0.
It is obvious that the norm [us(0)|| may be estimated from above by the
norm ||(u,w)||gz. Now, from (10) it follows that for any v > 0 and arbitrary

|ug (0)||+]|w:(0)]| depending on the norm of initial condition ||ug||g2 +||wol| m2
3

M

there exists p > 0 such that p — CT(Hut(O)H + |lwe(0)]]) > 0. Then from
VO

(10) we conclude that the norm |lu(¢)|| satisfies the inequality

[ (0[] < [fa (0)f] 2 > 0. (11)

Existence and uniqueness of a solution “in the large” with the help of estimate
(11) may be obtained in the same way as in the monograph of O.A.Ladyzhenskaya.
The proof is completed.



Improvement of the Ladyzhenskaya modification

Consider now another modification of the Navier-Stokes equations, when the
viscosity coefficient is the same in all directions, but the elliptic operator
is changed. O.A. Ladyzhenskaya proposed modification of the Navier-Stokes
equations allowing to prove existence of a strong solution to (1) “in the large”:

u; — vAu — vd*u — ve [div (D(u,w)Vu) + 9, (D(u, w)d,u)]
+Vp+ (u-V)u+wu, =f,

wy — vAw — vd*w — ve [div (D(u, w)Vw) + 9, (D(u, w)d,w))

(12)
+p, + (u- V)w + ww, = g,
diva+w, =0,
0) = di 0,wg = 0, , =0,
(u,w)(z,0) = (ug, wp)(z), divuy + d,wy (u,w) poxio]
where
D(u,w) = |Vul]® + [Vuw|* + [0,ul® + |0,w|. (13)

Consider another modification of the Navier-Stokes equations arising in
ocean dynamics. Namely, we consider (12) as modification of (1), but instead
of (13) we use D(u,w) = |Vul?, remove the term 9, (D(u,w)d,u) from the
first equation of (12), and do not change the equation for w. So, we consider
the problem

u; — vAu — vd*u — vediv (|[Vu|*Vu)
+Vp+ (u-V)u+wu, =f,
wy — vAw — vd*w + p, + (u- V)w + ww, = g, (14)

divu+ w, =0,

= 0.

(0,w0)(r,0) = (w0, wo)(x), divewy + 0o =0, (ww)| =

To study solvability of (14) “in the large”, we need the following lemmas.
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Lemma 1. Let v € H}[0,1]. Then the following estimate holds

maxv*(z) < 2[jvz |l [Jv]l- (15)

Proof. Extend v onto the whole axes by zero. Then

xT

() =2 / va(@)o(z)dz < 2| ]|

QED.
Lemma 2. Let f € Hi(Q), fz, [y € La(Q), Q € R?, then

25
715 < S e llall lall £ LA (16)

Proof. Extend by zero the function f onto the whole space R3. Then

£ 2P =2 [ VTG 2 .2 Falo.y.2)do

< / @2 £, 2) fue, g, 2)dy.

Using the Holder inequality, from the previous expression we have

25, .13/2 3/2
£y, 2P < U el LT folag,

Integration over R* and further implementation of the Holder inequality give

25
| [ irasdyiz < [ [ 1A sy [ 1030 e, b | d:
E. |E, By
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QED.
Corollary. Since abc < 0.5a%b? + 0.5¢% < 0.25(a* + b*) + 0.5¢%, a,b,c > 0,
then from (16) it follows

25
1715 < - Cfella + IAull + 201 £ P11 (17)

Let us obtain a proper a priori estimate for a solution to (14). Take a
scalar product of (14) and (u,w):
1d
2ar
Obvious estimation of the right-hand side of (18) and further integration in
t from 0 to T give

Fall® + [lwl?) + v (e | + llwe1*) +ev[Vulli = (£, 1) + (g, w). (18)

T
max (|lu(t)]* + lw(®)]*) + V/ (a1 + lwaI* + el Vull3) dt
0

0<t<T
(19)
T
1
<or | uol? + ol + 4 [ (IEIE, + gl de
0
Rewrite (18) in another form:
v (lucl® + [lwell?) +ev[Vuli = (1) + (g,w) = (ur,u) = (wy, w).
Estimating right-hand side and using (19), we get
e | + lws|* + el Vally < ea([fuell + [lwell + €12, + llgll2,). (20)
Differentiate (14) in ¢:
uy; — vdiv ((1 + €| Vul?) V) — vediv ([|[Vul?];Vu) — vd?u,
—f—th + (u . V)ut + (ut . V)u + WU, + wa, = fta
wy — vAw, — vO2w, + pr. + (0 V)wy (21)

+(u; - Vw + wwy, + waw, = gy,

div U + Wy = O7 (ut, wt) =0.
00 x[0,T
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Take scalar product of (21) and (u;, wy):

1d 1d
5@”“75“2 + 5%“wt”2 + vljug||® + viwg?

rev [ (Fwp(Fu e TP + (st 0 (22)
Q
+H(wpuy, wy) + (UgWs, , we) + (Wpw,, we) = (£, wg) + (g4, we).
To estimate scalar products of (22) we need the following inequalities
lwllioss < (48) 10w [I*/2 ][],
[vlls < (48)Y2lwa |1/ [v]]*72, (23)
lolls/s < (48)/]fva[** [l0]]P/®,
being valid for functions from the Sobolev space Hj (), Q € R®. Then we

have )
|| = [(uka,, we)| < || Vulls][ue3 < ef[Val|af [ |||

C
< Olfuge | + SVl

Estimate now the second scalar product. Integration by parts and the use
of the incompressibility equation give

I, = (v, wy) = (divuwu, wg) — (weu,uy,) = I+ 1.

Estimate each of these scalar products separately using the Holder and
Young inequalities. We get

|I5| = |(divusu,ug)| < (use the Holder inequality with the powers 2, 5, 10/3)
< lJugallllulls[[uelhos < (due to (23)) < (48)"/10Jug | %55 [u | |*/°
< (due to the Young inequality) < d||us,||? + cs|lull2]|u]|* < (due to (17))

< Ol [* + es([[Vall3 + [[ue]?) e )%,



In the same way one gets
I} = |(wyu,uy,)| < (use the Holder inequality with the powers 10/3, 5, 2)

|3/5 |2/5

< clluezl[lulls|lwell10/s < (due to (23)) < cljug||[|ulls]lwe > w|
< Ofluea|® + csllul | wesl|*/ w7
< (due to the Young inequality with the powers 5/3, 5/2)

< Sl ? + 8w + cslulZwd?  (due to (17)

< Olfuge | + Ol weal* + es(I[Vull3 + [[ue]|*) |w*



For estimation the other two scalar products we need the following
Lemma 3. The estimate
maxuls 5., < | Vulls (24)

holds.
Proof. As before, extend w and u onto the whole R? by zero and denote the
obtained functions by the same letters. Then, we get

. 4 1/4

wlas,, = // /divudz dedy | < / Vs, d= < o|VullL.

— OO

The statement of the lemma follows directly from the last inequality. Q.E.D.

Estimate now the scalar product Is:

I3 = (Ukthk>wt) = —(diV ww, wt) - (uktwawt:ck)
= (wtzUJ, wt) - (uktwawtxk) = I:/», + ]§/§

Obtain a priori estimates for I5 and If separately. One has

o0 oo o0

) = | (upew, wia, )| < / / / g0, wo, |dady | dz

—00 oo —00

o0
< ¢|Vull, / W, el d
— 00

1/2 1/2
< e[Vl / Va2 w2 [l dz

< cl[Vulla[[ Vg |2 ag [V [wea]| < 0lfweal* + sl Val 2] V[

< Olwial? + 0l Vue ]l + sl Vull3 e %,
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23] = |(wp, w2, we) | = [(divw, wi)| < [[Vualafw3

< e[Vl [ flwe |74 < 8w |2 + el Val[§ w2

Finally, I, = Ij, so I is estimated from above as [j. Substituting the
above inequalities into (22) with appropriate § and estimating the right-hand
side of (22) by the obvious way, we get

d
2 (el + llwel?) + viwe|* + vlwe|?

sev [ (Vw(Vu)ids + (PP (25)

< e (1120 + llgell?y + (IValld + llwe 1) (el + lwel*)) -

Using the Gronwall inequality, from (25) it follows
0<t<T

T
max ([ (2)[1* + [lw:(£)]I*) + / (e | + flwes 1) dt
0

T

< Hut(O)H2+Ith(O)H2+/(HftH21+HgtHQl)dt (26)

T
<oxp [ ¢ / (19l + [l [2)dt
0
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Introduce the space V of divergence free vector functions (u, w) vanishing
on 0 x [0,7T] with the norm

T 1/4

1/2 T
o)l = | [ (raal+ oal? + l? + usl?) e |+ { [ [valia
0

0

and define a solution to (14) as a vector function (u,w) € V being equal to
(ug, wp) for t = 0 and satisfying the following identity

T
/(mﬁw+ymm%)+w@mﬁvmvw+ymmm)
0

+((u-Vu,v) + ((u-V)w, h) + (ww,, h)
—(£,v) — (g, h))dt —0 Y(v,h)€V.

Using the Galerkin method and estimate (26), it is not difficult to prove
that a solution to (27) exists and is unique and the norm |ju.|| + ||w.]|| is
continuous in time.

Thus, we have proved

Theorem 2. For any initial condition

u, € H* NHy, wy € H*N Hy, diva+w, =0,
T

right-hand sides £ and g such that / (N2 + [lgell?y)dt < oo,

0

any v > 0, € > 0 and arbitrary time interval [0,T) there ezists a solution
to (14) “in the large”, i.e. there exists a unique solution (u,w) € V to (14)
satisfying (27) and the norm ||u,||? + ||w.||? is continuous in time on [0,T).
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